碳化硅,新能源车“里程焦虑”的一种新解法
发布时间:2022-12-02 10:36:03

641.gif

电动汽车发展还有上升空间吗?

一直以来,“里程焦虑”、“充电缓慢”都是卡住新能源汽车脖子的关键问题,是车企和车主共同的焦虑。

为了解决最大的痛点,车企围绕着这个核心又迷茫的话题进行着不断的探索。但无论蔚来的换电策略、还是电池厂商不断探索的高密度三元锂电池,似乎都是在电池容量上下功夫,并没有真正地解决充电速率的问题,快速充电一直是人们心中一道过不去的坎。

但随着高压电气技术的不断进步,快充时代已经到来。继2019年4月保时捷Taycan Turbo S 全球首发三年后,800V高压超充终于开始了普及。相比于400V,800V带来了更高的功效,大幅提升功率,实现了15分钟的快充补能。

而构建800V超充平台的灵魂就是材料的革新,基于碳化硅的新型控制器,便引领着这一轮高压技术的革命。

本文从碳化硅发展原因讲起,分析了下游应用市场与相关公司,以期全方位体现碳化硅发展现状、前景与具体投资机会。

碳化硅成半导体攻关热点

作为半导体材料之一,碳化硅的快速发展得益于半导体的广阔市场带动。

半导体,指常温下导电性能介于导体与绝缘体之间的材料,被称为现代工业的“粮食”。近年受益于智能手机和智能穿戴等新兴消费电子市场的快速放量,以及汽车电子、工业控制和物联网等科技产业的发展,叠加半导体国产化的快速推进,我国半导体产业迎来了快速发展阶段。

近年来,全球半导体材料市场规模稳健增长。总销售额从2010年的449亿美元增长至2021年的643亿美元,2010-2021年复合增长率为33.3%。未来,随着半导体芯片工艺升级、芯片尺寸持续小型化,以及全球硅材料、化合物半导体材料的品种和性能不断迭代升级的影响下,晶圆制造材料占比有望继续提升。

我国半导体产业更是处于高速发展的阶段。2021年,我国半导体销售额达到了1921亿美元,同比增长 26.80%,2017-2021年复合增速高达9.94%,高于全球同期6.18%的复合增速。从销售额占比来看,我国半导体产业的全球影响力逐步增强,国内半导体销售额占全球比重从2017年的30.69%提升至2021年的35.27%。

碳化硅材料电气性能优越,有望成为半导体领域最具前景的材料之一。

半导体材料发展至今已经历三个阶段。常见的半导体材料包括硅(Si)、锗(GE)等元素半导体及砷化镓(GaAs)、碳化硅(SiC)、氮化镓(GaN)等化合物半导体材料。

从被研究和规模化应用的时间先后顺序来看,上述半导体材料被业内通俗地划分为三代:

第一代半导体是以硅(Si)、锗(Ge)为代表,从20世纪50年代开始大规模应用,主要应用于低压、低频、低功率的晶体管和探测器中。但是硅材料的物理性质限制了其在光电子和高频电子器件上的应用,无法满足人类的需求。

第二代半导体材料是以砷化镓(GaAs)、磷化铟(InP)化合物材料为代表,从20时机90年代开始大规模应用,适用于制作高速高频、大功率及发光电子器件。但是第二代半导体击穿电场较低,限制了其在高温、高频和高功率器件领域的应用。另外砷化镓材料有毒,存在着引起环境污染的问题。

第三代半导体材料是以碳化硅(SiC)、氮化镓(GaN)为代表的宽禁带半导体,多在通信、新能源汽车、高铁、卫星通信、航空航天等场景中应用。与前两代半导体材料相比,第三代半导体材料禁带宽度大,具有击穿电场高、热导率高、电子饱和速率高、抗辐射能力强等优势,因此,采用第三代半导体材料制备的半导体器件不仅能在更高的温度下稳定运行,适用于高电压、高频率场景,此外,还能以较少的电能消耗,获得更高的运行能力。

碳化硅在第三代半导体中存在的主要形式是作为衬底材料,可以满足高温、高压、高频、大功率等条件下的应用需求,当前碳化硅衬底已应用于射频器件及功率器件。具体来说,碳化硅器件有以下几个优点:

1)耐高压:碳化硅击穿电场强度大,碳化硅制备器件可以极大提高耐压容量、工作频率与电流密度,在实际应用中可以设计成更小的体积。

2)耐高温:碳化硅的禁带接近硅的3倍,可以保证碳化硅器件在高温条件下工作的可靠性,极限温度甚至可达600℃。同时,其导热性更高,有助于器件的散热,有助于实现设备的小型化。

3)实现高频性能:碳化硅包和电子漂移速率大,可以实现更高的工作频率与功率密度,也可以减少能量损失。在800V高压工作下,碳化硅 MOSFET逆变器的能量损失仅为硅基IGBT能量损失的30%-50%之间。

SiC产业链中,价值主要集中于上游衬底和外延。

SiC生产过程主要包括碳化硅单晶生长、外延层生长及器件制造三大步骤,分别对应衬底、外延、器件三大环节。

三大环节中,衬底成本占比达47%,其次为外延片,占比23%,这两大工序为SiC器件的重要组成部分。由于SiC衬底生产工艺壁垒高,生产良率较低,全球产量具有明显的瓶颈,因此其制造成本一直居高不下。此外,外延片的参数性能会受到SiC衬底质量的影响,其本身也会影响下游器件的性能。若能在衬底和外延片环节进行技术突破,将会大幅降低制造成本,提高性能。

来源:部分摘自互联网

合盛.GIF